
lable at ScienceDirect

Microporous and Mesoporous Materials 208 (2015) 50e54  
Contents lists avai
Microporous and Mesoporous Materials

journal homepage: www.elsevier .com/locate/micromeso

 

Prediction of gas storage capacities in metal organic frameworks using
artificial neural network

Zeynep Yıldız*, Harun Uzun
Ondokuz Mayıs University, Engineering Faculty, Department of Chemical Engineering, Kurupelit, 55139 Samsun, Turkey
a r t i c l e i n f o

Article history:
Received 17 April 2014
Received in revised form
14 January 2015
Accepted 23 January 2015
Available online 29 January 2015

Keywords:
Adsorption
Artificial neural network
Gas storage
MOFs
* Corresponding author.
E-mail addresses: zeynepyildiz.omu@gmail.com

gmail.com (H. Uzun).

http://dx.doi.org/10.1016/j.micromeso.2015.01.037
1387-1811/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t

In this study, artificial neural network was developed to forecast adsorption capacity of hydrogen gas in
metal organic frameworks. Surface area, adsorption enthalpy, temperature and pressure were selected as
input parameters. Hydrogen storage capacities of MOFs were computed using these four parameters. An
artificial neural network was used to model the adsorption process. The prediction results were
remarkably agreed with the experimental data.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

The design and synthesis of coordination polymers with un-
usual structures and properties are gaining increasing interest, not
only for their intriguing molecular topologies, but also for their
potential applications as functional materials [1e3]. The construc-
tion of molecular architecture depends on the combination of
several factors, like the coordination geometry of metal salt and
ligand [1e7]. Metal organic frameworks (MOFs) have been identi-
fied as a new group of porous materials with excellent potential in
gas storage and gas separation applications because of their wide
range of pore sizes, chemical functionalities, good thermal and
mechanical properties [8e10]. MOFs, also known as coordination
polymers. A variety of physical and chemical properties of MOFs
make them attractive in a wide range of applications such as gas
storage, gas separation, drug delivery, sensing, and catalysis [11].

Artificial neural network (ANN) uses interconnected mathe-
matical neurons to create a structure that models complicated
systems [12]. In the network, all neurons are connected to each
other. The input signal passes through the neuron and the output is
calculated by weight and bias associated with connections. A sub-
stantial kind of ANN for anticipation, optimization and
(Z. Yıldız), harunuzun.omu@
classification is established in different fields including computer
science economics, chemistry and chemical engineering and water
resources engineering [13e15].

2. Materials and methods

2.1. Adsorbents

Metal Organic Frameworks (MOFs) have been used as adsorbent
in this work. We studied thirteen different metal organic frame-
works (MOFs) which are expected to high surface areas. The syn-
thesis of MOFs followed that described in the literature. The
composites were prepared as those described in details in
Refs. [20e24]. According to references, the temperature is at 77 K.
BrunauereEmmetteTeller surface area range is 10e2847 m2 g�1.
The adsorption enthalpy (DHads) is between 6.1 and 10.5 kJ mol�1.
Moreover, The pressure is generally at 1.2 bar.

2.2. Artificial neural network modeling

The modeling of nonlinear systems is difficult and success has
been restricted to restrictive classes of nonlinear systems. The
major application of artificial neural network (ANN) is that they
tender the potential of a generic approach to the modeling of
nonlinear systems [16,17].

The modeling of adsorption processes because of possessing
nonlinear nature and multiple inputs and outputs is not easy. ANN
 

Delta:1_given name
Delta:1_surname
mailto:zeynepyildiz.omu@gmail.com
mailto:harunuzun.omu@gmail.com
mailto:harunuzun.omu@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micromeso.2015.01.037&domain=pdf
www.sciencedirect.com/science/journal/13871811
www.elsevier.com/locate/micromeso
http://dx.doi.org/10.1016/j.micromeso.2015.01.037
http://dx.doi.org/10.1016/j.micromeso.2015.01.037
http://dx.doi.org/10.1016/j.micromeso.2015.01.037


Fig. 1. Multi layers artificial neural network architecture.
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has been successfully utilized for prediction adsorption processes
of different sorbates from aqueous solution with various adsor-
bents [18,19].

Four inputs has been made to apply an Artificial Neural Network
(ANN) model to predict the gas storage capacities of MOFs using
different parameters such as temperature, adsorption enthalpy,
surface area, pressure.

There are different neural network architectures. The basic ar-
chitectures include multilayered feed-forward networks that are
trained using back-propagation training algorithms. A variation in
the architecture of such a network can be due to a variation of the
number of layers, the number of neurons in each layer, the transfer
function of neurons in each layer [18].

An artificial neural networks structure contains layers, inputs,
weights, outputs, NET function and activation function (Fig. 1). In-
formation of input layer plays important roles in the construction
system. Important of this information is obtained using weights.
NET function is the inputs of weights total.
Table 1
Data of metal organic frameworks used in artificial neural network.

Metal organic frameworksa SABET [m2 g�1] DH

Calibrating data Cu6O(tzi)3(NO3) 2847 9
Co3 [(Mn4CI)3(btt)8]2,1.7CoCI2 2096 10
Fe3 [(Mn4CI)3(btt)8]2,FeCl2 2033 10
Zn3 [(Zn0.7Mn3.3Cl)3(btt)8]2,2ZnCI2 1927 9
Li3.2Mn1.4 [(MnCl)3(btt)8]2,0.4LiCl 1904 8
Liþ@Zn2(ndc)2(diPyNІ) 756 6
Mn2(bdt)Cl2 530 8
Mn3(bdt)3 290 8
Mg3(ndc)3 10 9

Testing data Ni2.75Mn0.25 [(Mn4Cl)3(btt)8]2 2110 9
Mn3 [(Mn4Cl)3(btt)8]2,0.75CuPF6 1911 9
Cu3 [(Cu2.9Mn1.1Cl)3(btt)8]2,2CuCI2 1695 8
Zn3(bdt)3 640 8

a Abbreviations: tzi ¼ 5-tetrazolylisophthalate; btt ¼ 1.3.5-benzenetristetrazolat
naphthalenetetracarboxydiimide; bdt ¼ 1.4-benzeneditetrazolate.
Net inputs come to cell and they are converted to outputs using
activation function and transferred to other cells. The mechanism is
shown in Equation (1).
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3. Results and discussion

3.1. Metal organic frameworks datas

In Table 1, Porosity data and H2 storage properties for
porous metal-organic frameworks are described. SABET, DHads
are the BrunauereEmmetteTeller surface area, the adsorption
enthalpy, respectively. Nine different metal organic frameworks
data were used for training. Four metal organic frameworks
ads [kJ mol�1] P [bar] Temperature [K] H2 uptake [wt%] Ref.

.5 1 77.0 2.4 [20]

.5 1.2 77.0 2.12 [21]

.2 1.2 77.0 2.21 [21]

.6 1.2 77.0 2.10 [21]

.9 1.2 77.0 2.06 [21]

.1 1 77.0 1.63 [22]

.8 1.2 77.0 0.82 [23]

.4 1.2 77.0 0.97 [23]

.5 1.2 77.0 0.46 [24]

.1 1.2 77.0 2.29 [21]

.9 1.2 77.0 2.00 [21]

.5 1.2 77.0 2.02 [21]

.7 1.2 77.0 1.46 [23]

e; ndc ¼ 2.6-naphthalenedicarboxylate; diPyNІ ¼ N,N0-di-(4-pyridyl)-1.4.5.8-

 



Table 2
Comparison of different ANN network structure performances.

Model Inputs Network
topology

RMSE MBE MAE R2

ANN1 Bet, dH, P,T 1 � 1 0.142 0.089 0.067 0.97
ANN2 Bet, dH, P,T 2 � 1 0.140 0.089 0.070 0.97
ANN3 Bet, dH, P,T 3 � 1 0.194 0.138 0.078 0.94
ANN4 Bet, dH, P,T 4 � 1 0.160 0.107 0.045 0.97
ANN5 Bet, dH, P,T 5 � 1 0.134 0.116 �0.036 0.94
ANN6 Bet, dH, P,T 7 � 1 0.192 0.134 0.052 0.98
ANN7 Bet, dH, P,T 10 � 1 0.251 0.196 0.069 0.99
ANN8 Bet, dH, P,T 15 � 1 0.216 0.192 0.074 0.85
ANN9 Bet, dH, P,T 20 � 1 0.458 0.390 0.232 0.75
ANN10 Bet, dH, P,T 3 � 3 � 1 0.147 0.111 0.044 0.95
ANN11 Bet, dH, P,T 3 � 5 � 1 0.212 0.151 0.099 0.92
ANN12 Bet, dH, P,T 4 � 1 � 1 0.139 0.090 0.066 0.97
ANN13 Bet, dH, P,T 4 � 2 � 1 0.325 0.221 0.171 0.90
ANN14 Bet, dH, P,T 4 � 3 � 1 0.293 0.240 0.129 0.81
ANN15 Bet, dH, P,T 4 � 4 � 1 0.258 0.238 0.174 0.74
ANN16 Bet, dH, P,T 4 � 5 � 1 0.083 0.065 0.001 0.93
ANN17 Bet, dH, P,T 4 � 7 � 1 1.600 1.150 �0.418 0.08
ANN18 Bet, dH, P,T 4 � 10 � 1 0.233 0.145 0.086 0.96
ANN19 Bet, dH, P,T 4 � 15 � 1 0.244 0.234 �0.076 0.41
ANN20 Bet, dH, P,T 4 � 20 � 1 0.427 0.400 �0.017 0.59
ANN21 Bet 4 � 5 � 1 0.439 0.350 �0.350 0.77
ANN22 dH 4 � 5 � 1 0.829 0.711 0.416 0.59
ANN23 Bet, dH 4 � 5 � 1 1.158 0.878 �0.567 0.89
ANN24 Bet, dH, P 4 � 5 � 1 0.548 0.334 0.208 0.91

The bold values indicate ANN16 gave the best results.

Table 3
Prediction results for testing data of ANN16 model.

Metal organic frameworks Experimental Predicted % Error

Ni2.75Mn0.25 [(Mn4Cl)3(btt)8]2 2.29 2.16 6.11
Mn3 [(Mn4Cl)3(btt)8]2,0.75CuPF6 2.00 2.10 4.73
Cu3 [(Cu2.9Mn1.1Cl)3(btt)8]2,2CuCI2 2.02 2.04 1.09
Zn3(bdt)3 1.46 1.47 0.37
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data were used for testing. The obtained results are shown in
Table 2.

3.2. The ANN models

Artificial Neural Networks (ANNs) are widely used to describe
complex systems that are difficult to model using conventional
modeling techniques such as mathematical modeling. The most
common applications are function approximation (feature extrac-
tion), and pattern recognition and classification. There is no exact
available formula to decide what architecture of ANN and which
training algorithm will solve a given problem. The best solution is
Fig. 2. Comparison of ANN16 m
obtained by trial and error. One can get an idea by looking at a
problem and decide to start with simple networks; going on to
complex ones till the solution is within the acceptable limits of
error [18].

The most widely used neural network is back-propagation (BP).
BP is a descent algorithm, which attempts to minimize the error at
each iteration. The weights of the network are adjusted by the al-
gorithm such that the error is decreased along a descent direction.
In the back-propagation learning, the actual outputs are compared
with the target values to derive the error signals, which are prop-
agated backward layer by layer for the updating of the synaptic
weights in all the lower layers [18].

In this work, gas storage capacities of metal organic frameworks
were first tested by ANN model. LevenbergeMarquardt algorithm
was used for the training of artificial neural network. This algo-
rithm, which is included in MATLAB's Neural Network Toolbox was
chosen since if often has higher rates of convergence than the other
algorithm provided in the toolbox.

Different network architectureswere tried to predict gas storage
capacities of metal organic frameworks, and evaluate on their
performance based on root mean square error (RMSE), mean ab-
solute error (MAE), mean bias error (MBE) and determination of
coefficient (R2) (Table 2). These errors were estimated using
Equations (2)e(4). ANN modeling was performed using Matlab
mathematical software by ANN toolbox.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Fig. 3. Comparison of ANN16 model testing performance.
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As seen in Table 1, MOFs data are divided into 2 groups. The
calibrating data groups were used for training. The testing data
groups were used for testing. Different network topologies are
tested according to their performance. The abilities of different
ANNmodels for prediction of the hydrogen gas storage capacities of
metal organic frameworks are presented in Table 2. A value of the
regression coefficient is given for training in Fig. 2.

As seen in Table 2, ANN16 modal has provided the lowest RMSE
value. Therefore, ANN16 was chosen an the convenient model and
used at the rest of study to predict H2 adsorption capacities of
MOFs.

Total iterations of this model are set to 1000 and performance
goal was chosen as 10�3. The model was consisted of 3 layers; an
Table 4
The network parameters of ANN16 model.

Weights

Neuron1 Neuron2 Neuron3 Neuron4

First hidden layer 0.00045821 0.08753948 0.00777338 0.7045504
�0.0011831 0.6087482 0.24651024 0.6578903
0.15354799 �0.5099192 �1.019364 0.0928363
0.03715775 �0.4220819 1.03506991 2.8515596

Second hidden layer 0.71726778 �11.68674 3.88441665 �1.1756562
0.29824445 �1.879594 �3.7972765 �0.4130173

�1.6964827 �0.044386 �0.6184277 1.6983864
�0.0226042 �2.9098683 0.60417221 �0.1556335

Output layer �0.9036864
�4.6081575
4.47086645

�0.5583055
1.28091068
input layer with 4 inputs (surface area, adsorption enthalpy, tem-
perature and pressure), two hidden layers with first one 4, second
one 5 neurons and an output neuron with 1 neuron (4 � 5 � 1).
Input layer and hidden layer have nonlinear activation neurons
(tansig) and output layer has linear neuron (purelin) in network
topology. The prediction results are shown for testing data of
ANN16 model in Table 3.

As seen in Table 3, the experimental datas and prediction results
can be used for testing. Network was able efficiently to predict the
adsorption process, because comparison between experimental
and calculated values by network gave reasonable regression co-
efficient (R2) equal to 0.925 (Fig. 3).

The networks parameters of ANN16 indicate in Table 4.
4. Conclusions

This study aims to predict the gas storage capacities of MOFs
using artificial intelligence techniques. A three-layer network with
9 neurons in hidden layer was used to estimate and model
adsorption capacity. The gas storage capacity was related with
Biases

Neuron5 Neuron1 Neuron2 Neuron3 Neuron4 Neuron5

1 �3.64337 �8.1595 2.13563 �3.0751
2
6
9

0.6185427 �2.52483 �0.30291 �0.6456 �0.48901 2.091306
�0.3174529

9 0.94397316
1.73438043

�0.05001
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operating parameters such as, temperature, adsorption enthalpy,
surface area, pressure. Therefore, ANN model was developed based
on these parameters.

The high value of correlation coefficient (R2 ¼ 0.925) obtained
by provided ANNmodel confirmed the reliability of prediction. The
experimental results and ANN model predictions were in a good
agreement. We generated twenty four different models. Among
them, ANN16 gave the best results.

The experimental temperature and pressure of references were
77 K and 1.2 bar. The prediction range of model can be extended by
using more data at different operation conditions. This study is the
first at prediction of H2 storage capacity of MOFs using.

As a conclusion, ANNs might be useful in process modeling, as
well as prediction of gas adsorption.
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